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Abstract. In the paper the design methodology and stability analysis of parallel distributed fuzzy
model based predictive control is presented. The idea is to design a control law for each rule of the
fuzzy model and blend them together. The proposed control algorithm is developed in state space
domain and is given in analytical form. The analytical form brings advantages in comparison with
optimization based control schemes especially in the sence of realization in real-time. The stability
analysis and design problems can be viewed as a linear matrix inequalities problem. This problem
is solved by convex programming involving LMIs. In the paper a sufficient stability condition for
parallel distributed fuzzy model-based predictive control is given. The problem is illustrated by an
example on magnetic suspension system.
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1. Introduction

The controlled processes are inherently nonlinear in nature, but the majority of
model-based predictive control (MBPC) applications and algorithms up to date are
based on linear models. The reason for that is in the use of a linear model and a
quadratic objective function where the nominal MBPC algorithms take the form of
a highly structured convex quadratic program, for which the solution can be easily
found.

In some highly nonlinear cases the use of nonlinear model-based predictive
control (NMBPC) can be easily justified. By introducing the nonlinear model into
predictive control problem, the complexity increases significantly. In [1] and [5]
an overview of different nonlinear predictive control approaches is given and dis-
cussed.

Many approaches to the nonlinear predictive control have been proposed in
recent years. They differ according to the predictive algorithm and according to the
model which approximates the process dynamics [3, 4, 7–11]. Fuzzy model-based
predictive control has become particularly important in recent years.

The main focus in the paper is given to predictive functional control based on
fuzzy model which is a parallel distributed fuzzy model-based predictive control
algorithm (PFCFM). The PFCFM is actually a collection of individual predictive
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control laws for each fuzzy model rule, which are blended together at the end. The
control law in the case of PFCFM approach is based on fuzzy model and is given in
analytical form. This makes the approach very easy for implementation in real-time
applications.

The most important part of the paper is stability study of the proposed control
system. The investigation of the stability in the case of nonlinear control systems
which are based on fuzzy models is especially difficult and important task. The
problem which arises is that the fuzzy model which has locally asymptotically
stable subsystems, can be globally unstable [16]. The problem of PFCFM stability
analysis is, in general, impossible to be solved in an analytical manner. These
problems have been approached by linear matrix inequalities (LMIs) in recent
years [16]. The stability problem of fuzzy systems can be viewed as an LMI prob-
lem. Instead of developing an analytical solution, the problem is reformulated to
verification whether an LMI is solvable by optimizing functionals over LMI con-
straints. In the paper a sufficient stability condition for parallel distributed fuzzy
model-based predictive control is given.

The paper is organized in the following way: in Section 2 the parallel distributed
fuzzy model-based predictive control is presented, Section 3 deals with stability
analysis of PFCFM using LMIs and in Section 4 the design and stability analysis
is given for magnetic suspension system.

2. Parallel Distributed Fuzzy Model-based Predictive Control

The fuzzy model is described by rules [12] which locally describe linear input
output relations of the system in state space form:

Rj : if xp1(k) is P1,k1 and xp2(k) is P2,k2 and . . . and xpq(k) is Pq,kq

then xm(k + 1) = Am,j xm(k) + Bm,ju(k − dj ), j = 1, . . . , m,

k1 = 1, . . . , f1, k2 = 1, . . . , f2, . . . , kq = 1, . . . , fq. (1)

The q-element vector xT
p(k) = [xp1(k), . . . , xpq(k)] denotes the input or variables

in premise, and variable y is the output of the model. With each variable in premise
xpi(k) (i = 1, . . . , q), fi fuzzy sets (Pi,1, . . . , Pi,fi

) are connected, and each fuzzy
set Pi,ki

(ki = 1, . . . , fi) is associated with a real-valued function µPi,ki
(xpi): R →

[0, 1], that produces membership grade of the variable xpi with respect to the fuzzy
set Pi,ki

. Am,j and Bm,j for j = 1, . . . , m are system model state-space matrices
and assuming also the time delay dj , where dj = round(Tj/Ts) and Tj stands
for time delay in j th operating domain, and Ts for sampling time. To make the
list of fuzzy rules complete, all possible variations of fuzzy sets are given in (1),
yielding the number of fuzzy rules m = f1 × f2 × · · · × fq . The variables xpi are
not the only inputs of the fuzzy system. Implicitly, the n-element vector xm(k)T =
[xm,1(k), . . . , xm,n(k)] also represents the input to the system. It is usually referred
to as the consequence vector.
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The whole output of the system is given by the following equation:

xm(k + 1)

=
∑f1

k1=1

∑f2
k2=1 . . .

∑fq

kq=1 µP1,k1
(xp1)µP2,k2

(xp2) · · · µPq,kq
(xpq)

∑f1
k1=1

∑f2
k2=1 . . .

∑fq

kq=1 µP1,k1
(xp1)µP2,k2

(xp2) · · · µPq,kq
(xpq)

× (Am,j xm(k) + Bm,ju(k − dj )). (2)

To simplify (2), a partition of unity is considered where functions βj (xp) defined
by

βj (xp) = µP1,k1
(xp1)µP2,k2

(xp2) · · · µPq,kq
(xpq)

∑f1
k1=1

∑f2
k2=1 . . .

∑fq

kq=1 µP1,k1
(xp1)µP2,k2

(xp2) · · · µPq,kq
(xpq)

,

j = 1, . . . , m, while k1 = 1, . . . , f1, . . . , kq = 1, . . . , fq, (3)

give information about the fulfilment of the respective fuzzy rule in the normalized
form. It is obvious that

∑m
j=1 βj (xp) = 1 irrespective of xp as long as the denomi-

nator of βj (xp) is not equal to zero (that can be easily prevented by stretching the
membership functions over the whole potential area of xp).

Combining (2) and (3) and changing summation over ki by summation over j

we arrive to the following fuzzy model in state-space domain:

xm(k + 1) =
m∑

j=1

βj (xp)(Am,j xm(k) + Bm,ju(k − dj )), (4)

ym(k) =
m∑

j=1

βj (xp)Cm,j xm(k). (5)

The use of membership functions in input space with overlapping receptive fields
provides interpolation and extrapolation and it has been shown in [6, 15, 17] that
fuzzy models can be viewed as universal approximators.

The problem of delays in the plant is circumvented by constructing an auxiliary
variable that serves as the output of the plant if there were no delay present. The
so-called “undelayed” model of the plant will be introduced for that purpose. It is
obtained by “removing” delay from the “delayed” model:

x0
m(k + 1) =

m∑

j=1

βj (xp)(Am,j x0
m(k) + Bm,ju(k)), (6)

y0
m(k) =

m∑

j=1

βj (xp)Cm,j x0
m(k), (7)

where y0
m(k) models the “undelayed” output of the plant.
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The fuzzy model described by Equations (6) and (7) has fixed real ma-
trices Am,j , j = 1, . . . , m, of the dimensions n × n, Bm,j , j = 1, . . . , m, of the
dimensions n × 1 and Cm,j , j = 1, . . . , m, of the dimension 1 × n. Those matrices
are interpreted as coefficients of a convex decomposition of the time-varying or
nonlinear system matrices. We refer to such a model as a polytopic model. No
special restrictions are imposed to those matrices. However, as it will be shown
in the following, the integral action of the proposed control is achieved when all
local systems are in the controllable canonical form. It is useful to introduce new
matrices:

Am =
∑

j

βj (xp(k))Am,j ,

Bm =
∑

j

βj (xp(k))Bm,j , (8)

Cm =
∑

j

βj (xp(k))Cm,j .

It is obvious that these matrices are not constant. Rather, they change as system
changes its operating point. Introducing Equation (8) into Equations (6) and (7) we
obtain:

x0
m(k + 1) = Ax0

m(k) + Bu(k),
(9)

y0
m(k) = Cx0

m(k).

The model form (9) is used for fuzzy model-based predictive control design.
The behavior of the closed-loop system in the case of almost all predictive con-
trol techniques is defined by the reference trajectory which is given implicitly or
explicitly. The control goal is to determine the future control action so that the
predicted output value coincides with the reference trajectory. The point where
the reference and output signals coincide is called a coincidence horizon and is
denoted by H . The prediction is calculated under assumption of constant future
manipulated variables (u(k) = u(k + 1) = · · · = u(k + H − 1)), i.e. the mean
level control and under assumption of constant βj , j = 1, . . . , m, through the
whole prediction horizon. Under those assumption the H -step ahead prediction of
the “undelayed” plant output at time instant k is obtained as

y0
m(k + H |k) = Cm

(
A

H

m x0
m(k) + (A

H

m − I)(Am − I)−1Bmu(k)
)
. (10)

The reference-model trajectory is given implicitly by exponential factor which
describes how the control error should behave in future. Through this exponential
factor ar , which is analog to the time constant of the reference model, we will
predict the control error H -step ahead. It has to be pointed out that our approach
does not involve explicit coincidence of the reference model and the plant output.
It only demands the exponential decreasing of the control error as given next:

w(k + H |k) − y0
p(k + H |k) = aH

r · (w(k) − y0
p(k)), (11)
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where w(k) and y0
p(k) stand for the current reference signal and output signal of the

“undelayed” plant, respectively. Assuming constant reference signal in the future,
the reference trajectory is given as follows:

y0
p(k + H |k) = w(k) − aH

r · (w(k) − y0
p(k)). (12)

The main goal of the proposed algorithm is to find the control law which en-
ables the reference trajectory tracking of the “undelayed” controlled signal. In other
words, u(k) has to be found to fulfil (12). The estimated value of the “undelayed”
process output is given as

y0
p(k + H |k) = y0

p(k) + y0
m(k + H |k) − y0

m(k). (13)

It is obtained under assumption that the plant output will change for the same
amount as its model in the same interval of time.

Combining (12), (13) and the prediction of model output given in (10), the
following is obtained:

u(k) = g−1
0

(
(1 − aH

r )(w(k) − y0
p(k)) + Cm(I − A

H

m)x0
m(k)

)
, (14)

where g0 stands for

g0 = Cm(A
H

m − I)(Am − I)−1Bm. (15)

The variable y0
p(k) cannot be measured directly. Rather, it will be estimated from

the available signals:

y0
p(k) = yp(k) − ym(k) + y0

m(k). (16)

Equation (16) is obtained by the same reasoning as Equation (13). Including (16)
in (14), the control law of PFCFM in analytical form is obtained:

u(k) = g−1
0

(
(1 − aH

r )(w(k) − yp(k) + ym(k) − y0
m(k))

+ Cm(I − A
H

m)x0
m(k)

)
. (17)

Note that the control law (17) is realizable if the gain g0 is nonzero. This is true
if H � ρ, where ρ is the relative order of the system (the difference between the
number of system poles and system zeros).

The parameters of the control law (17) are time-varying. This is the main draw-
back of the control law (17), because it is difficult to prove the stability when
the controller parameters are time-varying. This was the reason to transform the
proposed control law to parallel distributed control law. This means that the control
law is defined as m parallel constant controllers which are blended together to
compose the whole control signal as given next:

u(k) =
m∑

j=1

βj

(
g−1

0,j

(
(1 − aH

r )(w(k) − yp(k) + ym(k) − y0
m(k))

+ Cm,j (I − AH
m,j )x

0
m(k)

))
(18)
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and

g0,j = Cm,j (AH
m,j − I)(Am,j − I)−1Bm,j . (19)

In general, the above mentioned control laws (described by Equations (17) and
(18)) are not equivalent. They are equal when only one membership value is ac-
tivated, i.e. only one membership value is different from zero. However, even if
this is not the case, the two control laws produce similar results, but the stability
analysis is different.

Next, we will discuss the properties of proposed parallel distributed fuzzy
model-based predictive control which is given by Equations (18) and (19).

The very important feature of all control algorithms is the nature at low fre-
quencies. The control algorithm should be able to suppress the control error in
steady-state, i.e. the control law should have the integral nature. When we dis-
cuss the behavior at steady-state, we can assume constant membership values βi ,
i = 1, . . . , m, and Z-transformation can be applied over (18):

U(z) =
m∑

j=1

βj

(
g−1

0,j

(
(1 − aH

r )E(z)

+ Cm,j (I − AH
m,j )(zI − Am)−1BmU(z)

))
, (20)

E(z) = W(z) − Yp(z) + Ym(z) − Y 0
m(z) = W(z) − Y 0

p(z).

Solving (20) for U(z) yields

U(z) = (Gi(z))
−1

m∑

j=1

βj

(
g−1

0,j (1 − aH
r )

)
E(z), (21)

Gi(z) = 1 −
m∑

j=1

βj

(
g−1

0,j Cm,j (I − AH
m,j )

)
(zI − Am)−1Bm. (22)

The integral nature of the proposed control is proven if it can be shown that the
transfer function U(z)/E(z) has infinite DC-gain. This is equivalent to showing
that Gi(z)|z=1 = 0. It was mentioned before that the integral action is achieved if
the “local” systems in all fuzzy domains are in the controllable canonical form:

Am,j =









0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−aj,n −aj,n−1 −aj,n−2 . . . −aj,1









, Bm,j =









0
0
...

0
1









,

(23)

Cm,j = [ bj,n bj,n−1 . . . bj,1 ]. (24)
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It is easy to show that

(I − Am,j )
−1Bm,j = 1

1 + ∑n
i=1 aj,i




1
...

1



 . (25)

It is obvious that the matrices defined in Equation (8) are also in the controllable
canonical form and similar expression as the one in (25) can be calculated as
follows:

(I − Am)−1Bm = 1

1 + ∑n
i=1

∑m
j=1 βjaj,i




1
...

1



 . (26)

First, g0,j defined in Equation (19) will be simplified using Equation (25):

g0,j = Cm,j (I − AH
m,j )(I − Am,j )

−1Bm,j

= Cm,j (I − AH
m,j )

1

1 + ∑n
i=1 aj,i




1
...

1



 = g∗
j

1

1 + ∑n
i=1 aj,i

, (27)

where g∗
j was introduced as

g∗
j = Cm,j (I − AH

m,j )




1
...

1



 . (28)

The inverse of g0,j is needed in Equation (22) and it follows from Equation (27):

g−1
0,j = g∗−1

j

(

1 +
n∑

i=1

aj,i

)

. (29)

Introducing Equations (29) and (26) into Equation (22) we obtain

Gi(z)|z=1 = 1 −
m∑

j=1

βj

(

g∗−1
j

(

1 +
n∑

i=1

aj,i

)

Cm,j (I − AH
m,j )

)

× 1

1 + ∑n
i=1

∑m
j=1 βjaj,i




1
...

1



 . (30)

Further introducing Equation (28) into Equation (30) we arrive to the following

Gi(z)|z=1 = 1 −
m∑

j=1

βj

(

g∗−1
j

(

1 +
n∑

i=1

aj,i

)

g∗
j

)

× 1

1 + ∑n
i=1

∑m
j=1 βjaj,i

= 1 − 1 = 0, (31)
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where the identity
∑m

j=1 βj = 1 was taken into account. It was shown in Equa-
tion (31) that the DC-gain of the transfer function U(z)/E(z) is indeed infinite,
proving the integral property of the controller.

3. Stability Analysis Using LMI

The stability of control systems is one of their most important features. The inves-
tigation of the stability in the case of the control systems which are based on fuzzy
models is especially difficult and important task, because we are generally dealing
with nonlinear plants. The problem which arises is that the fuzzy model which has
locally asymptotically stable subsystems, i.e. all submatrices are Hurwitz, can be
globally unstable [16].

The problem of PFCFM stability analysis is in general impossible to be solved
in an analytical manner. These problems have been approached by linear matrix
inequalities (LMIs) in recent years [16]. The stability problem of fuzzy systems
can be viewed as an LMI problem. Instead of developing an analytical solution,
the problem is solved numerically by reformulating it to verification whether an
LMI is solvable, i.e. optimizing functionals over LMI constraints.

3.1. LINEAR MATRIX INEQUALITY

To introduce linear matrix inequalities [2], the mapping F is formulated as

F(x) = F0 + x1F1 + x2F2 + · · · + xmFm, (32)

where xT = [x1, x2, . . . , xm] is a vector of m real values which are called the
decision variables, F0, . . . , Fm are real symmetric matrices (Fi = FT

i ∈ R
n×n,

i = 0, . . . , m for n ∈ Z+).

DEFINITION 1. A Linear Matrix Inequality is an inequality

F(x) � 0, (33)

where F is an affine function mapping of a vector space V to the set S = {M |
∃n > 0 such that M = MT ∈ R

n×n} as defined in (32).

Note that ‘�’ in (33) denotes that F(x) is positive definite, i.e., uTF(x)u > 0,
∀u ∈ R

n, u �= 0. Equivalently, this means that the smallest eigenvalue of F(x) is
positive.

Remark 1. An example of LMIs is Lyapunov inequality F(x) = ATPA−P+Q ≺ 0,
where F applies an affine mapping F: R

n×n → S. The matrices A, Q ∈ R
n×n are
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assumed to be known and P ∈ R
n×n is the unknown matrix. The Lyapunov inequal-

ity defines an LMI only if the matrix Q is symmetric. In this case the Lyapunov
inequality can be rewritten in the form as given in (32):

F(x) = F

(
m∑

j=1

xj Ej

)

= F0 +
m∑

j=1

xj F(Ej ) = F0 +
m∑

j=1

xj Fj , (34)

where E1, . . . , Em define the basis of V and x can be defined as x = ∑m
j=1 xj Ej .

DEFINITION 2. A system of linear matrix inequalities is a finite set of linear matrix
inequalities

F1(x) � 0, F2(x) � 0, . . . , Fm(x) � 0. (35)

A very important property of the system of LMIs is that it can be rewritten as a
single LMI. This means that the inequalities in (35) are valid if and only if

F(x) =







F1(x) 0 . . . 0
0 F2(x) . . . 0
...

...
. . .

...

0 0 . . . Fm(x)





 � 0. (36)

The inequality (36) makes sense only when F(x) is symmetric and in that case
the eigenvalues of matrix are simply the union of the eigenvalues of F1(x), . . . ,

Fm(x).

3.2. STABILITY ANALYSIS OF PFCFM USING LMI

The stability analysis of the proposed PFCFM control can be performed using an
LMI approach shown in [16] and [14] assuming an ideal model of the plant is
available (yp(k) = ym(k), k ∈ Z+). The stability problem of PFCFM is reduced
to the stability analysis of autonomous closed-loop system (w(k) ≡ 0, k ∈ Z+),
which is obtained when the predictive control law from (18) is simplified due to the
above given assumptions and introducing Equation (7) which yields the following:

u(k) =
m∑

j=1

βjg
−1
0,j

(

(aH
r − 1)

m∑

l=1

Cm,lx0
m(k) + Cm,j (I − AH

m,j )x
0
m(k)

)

. (37)

When the control action (37) is introduced into Equation (6), we obtain

x0
m(k + 1) =

m∑

i=1

βi

(

Am,i + Bm,i

m∑

j=1

βjg
−1
0,j

(

(aH
r − 1)

m∑

l=1

βlCm,l

+ Cm,j (I − AH
m,j )

))

x0
m(k) (38)
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which can be written in a way that is more suitable for further analysis:

x0
m(k + 1) =

m∑

i=1

m∑

j=1

m∑

l=1

βiβjβl

(
Am,i + Bm,ig

−1
0,j (Cm,l(a

H
r − 1)

+ Cm,j (I − AH
m,j ))

)
x0

m(k). (39)

In the case when matrices Cm,j are the same in all fuzzy domains (this happens
when the zeros of the discrete transfer functions are the same) and can be denoted
by Cm, the stability analysis is simpler since summation over l is no longer needed
in Equation (39) and the system can be described by

x0
m(k + 1) =

m∑

i=1

m∑

j=1

βiβj

(
Am,i + Bm,ig

−1
0,j Cm(aH

r I − AH
m,j )

)
x0

m(k). (40)

The stability condition for fuzzy systems using Lyapunov approach is given
in [13]. The following theorem adapted from [13] gives sufficient condition for
global asymptotical stability of a fuzzy system using LMIs:

The fuzzy system given in the following form

x0
m(k + 1) =

m∑

j=1

βj Ac,j x0
m(k) (41)

is global asymptotically stable if there exist a common positive definite matrix P,
P = PT, that fulfils the set of inequalities:

AT
c,j PAc,j − P ≺ 0, j = 1, . . . , m. (42)

Proof. This means that the Lyapunov function V (x(k)) = xT(k)Px(k) � 0,
∀x(k) and V (0) = 0, �V (x(k)) = V (x(k +1))−V (x(k)) ≺ 0, ∀x(k), �V (0) = 0
and lim‖x(k)‖→∞ V (x(k)) = ∞. �

As it has been stated, the fuzzy system which is locally asymptotically stable,
i.e. all system submatrices are Hurwitz, can be globally unstable [16]. This means
that no common P can be found to fulfill (42). So, it is not sufficient to check the
eigenvalues of system submatrices.

The problem of global asymptotical stability in the case of PFCFM is refor-
mulated to verification of LMI feasibility, i.e. the PFCFM system is stable if there
exist a common positive definite matrix P such that

(Am,i + Bm,iKj,l)
TP(Am,i + Bm,iKj,l) − P ≺ 0, i, j, l = 1, . . . , m, (43)

where Kj,l stands for

Kj,l = g−1
0,j (Cm,l(a

H
r − 1) + Cm,j (I − AH

m,j )), (44)

g0,j = Cm(AH
m,j − I)(Am,j − I)−1Bm,j . (45)
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The system of LMIs (43) can be reformulated in one LMI. In order to do this,
the matrices Ac,ij l are introduced as

Ac,ij l = Am,i + Bm,iKj,l, i, j, l = 1, . . . , m. (46)

It has to be noted that investigation of PFCFM stability only needs to involve
those combinations of i, j , and l that can occur, i.e. only overlapping membership
functions have to be analysed. The global asymptotical stability is obtained when
the following condition is fulfilled:

AT
c PcAc − Pc ≺ 0, (47)

where

Ac =








Ac,111 0 . . . 0

0 Ac,112
... 0

...
...

. . .
...

0 . . . 0 Ac,mmm








(48)

and Pc � 0 is defined as follows:

Pc =







P 0 . . . 0

0 P
... 0

...
...

. . .
...

0 . . . 0 P





 � 0, (49)

where P is an arbitrary symmetric positive definite matrix.

4. Design and Stability Analysis of PFCFM for Magnetic Suspension System

The design and stability study of PFCFM will be illustrated on the case of magnetic
suspension system. The latter consists of an electromagnet, a coil and a distance
sensor. In Figure 1 the basic principle where uRL and i are the voltages and the

Figure 1. The magnetic suspension system.
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current of the electromagnet, respectively, is shown. Parameters R = 10.5 � and
L = 15.8 mH are resistance and inductance of the electromagnet, respectively,
c = 2.72 ·10−5 Nm2 A−2, m = 0.084 kg is the mass of the coil and l is the distance
between the electromagnet and the coil.

4.1. MODELLING OF THE PLANT

From the second Newton law we obtain

mg − Fm = m
d2l

dt2
, (50)

where the magnetic force Fm depends on the current i, the distance l and the
parameter c:

Fm = c
i2

l2
. (51)

The electrical part of the system is modelled by the following equation

uRL(t) = L
di

dt
+ Ri. (52)

The system of nonlinear differential equations comprising of Equations (50),
(51) and (52) can be seen as a nonlinear differential equation of third order. The
system which is open-loop unstable is compensated and stabilized in large by lead
compensator 5(s + 40)/(s + 400). The resulting closed-loop system was identified

Figure 2. Dynamic response of the stabilized system: the input signal uRL – dashed, the
output l – solid.
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Figure 3. The membership functions.

using fuzzy modelling. The experiment was conducted and the results are shown in
Figure 2. It is obvious that the dynamics of the responses depends most obviously
on the direction of the controlled variable, i.e. the responses of the system are
much different when the coil is going up from the case when it is going down.
Due to the two main behaviours the structure with two rules and triangular shaped
membership functions was chosen as shown in Figure 3.

The compensated system is modelled in a form of the third order discrete-time
model with the variable in premise xT

p(k) which defines the different dynamics
according to the trend of the distance xT

p(k) = [l(k) − l(k − 10)] (the value 10
here was chosen heuristically) and the consequence vector as xT(k) = [l(k), l(k −
1), l(k − 2)]. The structure of fuzzy model used for the model of the plant is given
next:

Rj : if l(k) − l(k − 10) is Pj then x(k + 1) = Am,j x(k) + Bm,ju(k),

ym(k) = Cm,j x(k), j = 1, 2. (53)

Performing fuzzy identification of the model (53) the following matrices in con-
trollable canonical form are obtained

Am,1 =
[ 0 1 0

0 0 1
−0.5822 0.2288 1.3449

]

, Bm,1 =
[ 0

0
1

]

,

Cm,1 = [ 0 0 0.0188 ] ,

(54)

Am,2 =
[ 0 1 0

0 0 1
−0.4755 0.1495 1.3174

]

, Bm,2 =
[ 0

0
1

]

,

Cm,2 = [ 0 0 0.0188 ] .

(55)
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The system is with zeros in the origin and the relative degree is of the first order
(ρ = 1). It is important that Cm,1 = Cm,2 what simplifies the stability analysis.

4.2. DESIGN AND STABILITY ANALYSIS OF PFCFM FOR MAGNETIC

SUSPENSION SYSTEM

The PFCFM control algorithm has two design parameters – the reference trajectory
constant or the reference model pole ar and horizon H . The proposed reference
model pole was chosen as ar = 0.92. The fuzzy model is of the first relative degree
and this implies the value of the coincidence horizon is equal H = ρ = 1. The
feedback controller gain vectors Kj , j = 1, 2, which are defined in (44) become in
the case of selected design parameters:

K1 = [ 0.5822 −0.2288 −0.4249 ] , (56)

K2 = [ 0.4755 −0.1495 −0.3974 ] , (57)

and the closed-loop system matrices (46) are the following:

Ac,11 =
[ 0 1.0000 0

0 0 1.0000
0 0 0.9200

]

,

Ac,12 =
[ 0 1.0000 0

0 0 1.0000
−0.1067 0.0793 0.9475

]

,

(58)

Ac,21 =
[ 0 1.0000 0

0 0 1.0000
0.1067 −0.0793 0.8925

]

,

Ac,22 =
[ 0 1.0000 0

0 0 1.0000
0 0 0.9200

]

.

Note that the index l is dropped in Equations (56)–(58) since the simplified analysis
is performed due to the equal output matrices in all fuzzy domains. The equilibrium
of the proposed PFCFM system is globally asymptotically stable if there exist a
common positive definite matrix P such that

AT
c,j iPAc,j i − P ≺ 0, j = 1, 2, i = 1, 2, (59)

i.e. a common P has to exist for all possible subsystems. If we can find a com-
mon P under given assumption, the PFCFM control law quadratically stabilizes
the system.

The common P problem can be solved in a way to find a positive definite matrix
for each subspace and check if it solves the problem in other subspaces. If we want



PREDICTIVE CONTROL BASED ON FUZZY MODEL 297

to prove the stability of the proposed system we have to find a common P or deter-
mine that no such matrix exists. It can be shown that positive definite symmetric
matrix P which is equal to

P =
[ 23.9222 −2.3365 −1.1683

−2.3365 35.9805 −7.5937
−1.1683 −7.5937 54.1861

]

(60)

satisfies the conditions given in (59) which means that the PFCFM system in the
case of magnetic suspension system is globally asymptotically stable.

The other way is to solve the system of linear matrix inequalities, as defined
in (48). In our case the matrix Ac is defined as

Ac =





Ac,11 0 0 0
0 Ac,12 0 0
0 0 Ac,21 0
0 0 0 Ac,22




 . (61)

A positive definite matrix Pc have to be find using LMI convex optimization tech-
niques to solve the system of linear matrix inequalities

AT
c PcAc − Pc ≺ 0, (62)

where Pc � 0 equals:

Pc =





P 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P




 . (63)

In the case of magnetic suspension system controlled by PFCFM we can find a
matrix P which is symmetric and positive definite and is given next:

P =
[ 10.48 −5.17 −4.69

−5.17 32.40 −28.00
−4.69 −28.00 37.14

]

. (64)

This proves the global asymptotic stability of the proposed predictive control sys-
tem where the reference trajectory was given as ar = 0.92 and the horizon is
H = 1. We can prove the global asymptotic stability for the interval 0 < ar < 0.94
at coincidence horizon H = 1. For the values 0.94 � ar < 1 we cannot find the
common positive definite symmetric matrix P, and we cannot assure the stability.
This does not mean that the system is unstable for those values of parameter ar

since the test only gives sufficient conditions for the stability.
At the end the simulation of the proposed system has been made and the refer-

ence, output and control signals are given in Figure 4. The design procedure can
be done by defining the coincidence horizon equal to the relative degree of the
model and finding the parameter ar which assures the system stability – in our case
ar = 0.92 was used.
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Figure 4. The PFCFM responses: the control signal uRL – dashed, the output signal l – solid,
the reference signal w – dotted.

5. Conclusion

The proposed design methodology and stability analysis of parallel distributed
fuzzy model-based predictive control give a very powerful framework for nonlinear
system control. The idea of blending single control laws for each fuzzy model rule
is very simple and natural and has been used in many fuzzy control approaches.
The proposed control algorithm is developed in state space domain and is given in
analytical form. This is an advantage in comparison to optimization based control
schemes especially in the sence of realization in real-time. The problem of fuzzy
model based control stability is in the case of parallel distributed fuzzy model-
based predictive control reduced to linear matrix inequalities problem which can be
solved by convex programming. The design procedure and stability analysis have
been shown on magnetic suspension system which is an example of a nonlinear
plant.
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